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Abstract-The paper presents a new and general method of calculating the total effectiveness and inter- 
mediate temperatures of assemblies of heat exchangers. The assemblies may consist of associations of 
any types of heat exchanger. 

The method utilises a transformation which relates the inlet and outlet temperatures of the fluid streams 
and this permits the derivation of closed form expressions. Previous expressions by Gardner, and Kays 
and London for assemblies of identical exchangers are shown to be special cases of the present general 
procedure. 

The advantages of the “effectiveness-number of transfer units” approach, are stressed and it is shown 
that the effectiveness is the more important parameter. 

NOMENCLATURE 

heat-transfer surface (m2) ; 
heat capacity rate (= tic,) 

(Js-“‘K-l); 
C for fluid with lower tic, (Js- ’ “K- ‘); 
Cforfluidwithhighertic,(Js-‘“K-l); 
Cmin through exchanger i (Js- ’ “K- ‘); 
C,,, throughexchanger i(Js-’ OK-‘); 
static thermal transfer factor for 
parallel flow (D = 1 - E(r + 1)); 
heat exchanger effectiveness 

(= s): 

effectiveness for the overall associa- 
tion of heat exchangers ; 
basic thermal static transfer matrix ; 
elementof[M](= 1 -E.r); 
element of [M] (= E . r) ; 
element of [M] (= E); 
element of [M] (= 1 - E) ; 
number of transfer units ; 
static thermal transfer factor for 
counter flow (= (1 ;- E . r)/(l - E)); 
partial inversion of [M] (see section 
5); 

summation of terms running from 
1 to n. 

Subscript 
i, running index (1 to n) identifies the 

number on the association of a par- 
ticular heat exchanger. 

inlet temperature in the association 
for fluid with C,,, (“K) ; 
outlet temperature in the association 
for fluid with Cmin (“K) ; 
overall unit heat transfer conductance 
based on unit of A (Wmv2 “K-l); 
fluid specific heat at constant pressure 
(JK,’ “K-l); 
fluid mass flow rate (Kg s-l) ; 
number of heat exchangers in the 
association ; 

( = CminlCmax) ; 

( = ick/icZmJ ; 

inlet temperature in the association 
for fluid with Cmin (“K) ; 
outlet temperature in the association 
for fluid with Cmin (OK); 

T - to (‘W; 

Tl - t, WI; 
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Superscript 
* , identifies quantities pertaining to in- 

dividual exchangers. 

INTRODUCTIOh’ 

IN many practical cases a given heat-transfer 
duty is achieved by a combination of heat 
exchangers in series, parallel or series-parallel. 
The exchangers are often of non-identical type 
(or size) and a multiplicity of associations are, 
therefore, possible. This has prevented the 
derivation of a systematic treatment of calculat- 
ing the overall efficiency and intermediate 
temperatures. The analysis of associations of 
identical exchangers in overall parallel or 
counterflow has previously been attempted by 
Gardner [l] and Bowman [2]; Shack [3] also 
considered the situation of one stream dividing 
equally between identical exchangers in cross- 
flow with the other stream. These authors 
obtained the overall, logarithmic-mean tem- 
perature-difference in terms of parameters which 
specifically related to each heat exchanger. 
Analyses of this type generally lead to cumber- 
some expressions for the logarithmic-mean 
temperature-difference and, if exchangers of 
different type are to be considered, a separate 
analysis is required for each assembly. A more 
general method is to be preferred. 

An attempt to provide a more general 
method was reported by Kays and London [4]. 
In this approach, the E - N,, (effectiveness - 
number of transfer units) concept was intro- 
duced but general expressions were only ob- 
tained for associations in overall countei-flow of 
identical exchangers. The E - N,, concept is, 
however, an important and useful one because 
the effectiveness, together with the heat capacity 
rate ratio, (r = Cmin/Cmax) fully describe the 
thermal behaviour of the exchanger. Also, if 
each exchanger can be characterized in terms 
of E -- Y, the thermal behaviour of the assembly 
can be expressed as a function of the same two 
variables; this implies that the analysis excludes 
any specific consideration of the type and size 
of the exchangers involved. 

Because the heat exchanger enters the analysis 
only by its E - r, and because r follows definite 
rules imposed by the association considered, 
any two exchangers in the association are 
thermally equivalent provided they have the 
same value of E : this is true for parallel, counter, 
cross, mixed flow or even regenerative type 
exchangers. 

1. OUTLINE OF THE PRESENT CONTRIBUTION 

In the present contribution a general method 
is described for obtaining the total effectiveness 
and intermediate temperatures of an assembly 
of heat exchangers in terms of individual 
effectiveness and fluid heat capacity rate ratio 
(Y = Cmin/Cmax). As the N,, of each exchanger is 
not used, the analysis is independent of the 
particular types of exchangers involved. 

Two novel concepts are introduced--the 
static thermal transfer matrix and the thermal 
transfer factor of a heat exchanger. They have 
been borrowed from the automatic control 
terminology and are described below. 

If we regard a heat exchanger as a physical 
device or “black box”, its behaviour is equiva- 
lent to an operator which transforms two input 
temperatures (one of each stream) to two output 
temperatures. The static thermal transfer matrix 
is that operator-when multiplied by the two 
input temperatures the results are the two 
output temperatures. This operator is a square 
matrix of four elements and is straightforwardly 
derived from the two linear algebraic equations 
which connect the inlet and outlet temperatures 
of the exchanger in terms of its effectiveness and 
heat capacity rate ratio. 

The thermal transfer factor connects, in a 
similar way, the difference of input temperatures 
to the difference of output temperatures. It is 
a constant for an exchanger and is easily derived 
by subtracting the two rows of the transfer 
matrix. 

By definition, the transfer factor and the 
transfer matrix are functions only of the 
effectiveness and heat capacity rate ratio of 
the exchanger and fully describe its thermal 
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behaviour. Their use brings many advantages 
when dealing with associations of exchangers. 

For the sake of illustration, let us consider an 
overall parallel flow association of heat exchan- 
gers. Because the two streams are common to all 
exchangers, I is the same for all of them. Regard- 
ing the exchangers as “black boxes”, and starting 
from one extremity of the association, we have 
two input temperatures-the temperatures of 
the hot and of the cold stream. These two input 
temperatures, which we call the input vector, 
when multiplied by the transfer matrix, give the 
output temperature vector; this is the outlet 
temperature of the first exchanger. These outlet 
temperatures of the first exchanger are the inlet 
temperatures for the second and, consequently, 
the multiplication of the second exchanger by 
the transfer matrix gives the outlet temperatures 
of the second exchanger; and so on until the 
last exchanger. From reasoning of this type, it 
can be shown that the whole assembly is equiva- 
lent to one exchanger whose transfer matrix is 
the product of the transfer matrices of the indi- 
vidual exchangers in the association. Other 
types of association can be considered in a 
similar way, and the assembly is always reduced 
to an equivalent exchanger with its own transfer 
matrix and transfer factor from which the total 
effectiveness is found. This reduction involves a 
matricial product and obtaining a solution would 
be a tedious operation if a closed form expression 
could not be found. Indeed, this closed form is 
one of the main novelties presented : it is possible 
because of the particular type of matrices 
involved. This expression also permits a limit 
analysis when the number of exchangers in the 
association increases to any arbitrary large 
number which, for a particular case, proves the 
method of Shack [3] to give absurd results. 

The main assumptions 
The main assumptions employed in the 

analysis are summarized as follows : 

(a) For each heat exchanger, the overall 
conductance for heat transfer-U-is a constant ; 

(b) fluid heat capacity rate ratio, r = Cmin/Cmax, 
is constant ; 

(c) each fluid is completely mixed at the inlet 
and outlet of each exchanger. 

Regarding nomenclature, quantities pertain- 
ing to the fluid with higher heat capacity rate 
(C,,,) are denoted by upper case letters; those 
pertaining to the fluid with Cmin by lower case 
letters. This convention permits a more compact 
treatment, avoiding the duplication which would 
result from the explicit consideration of two 
expressions for the effectiveness as used, for 
example, by Kays and London [4]. 

2. FUNDAMENTAL RELATIONSt 

From the definition of E and the thermal 
balance for the exchanger : 

Tl = (1 - Er)T, + Ert, 

t, = ET, + (1 - E)t, 

or, in matricial notation 

I::]-[:-” J [:I (l) 
If (TO, to) are taken as the components of an 
input temperature vector &,, and (T,, tl) as 
the components of the output vector ol, we 
can write (1) as 

8, = MB, (2) 

where M defined by (1) or (2) is the basic static 
thermal transfer matrix. To equation (1) or (2) 
corresponds the operation scheme shown in 
Fig. 1: 

FIG. 1. 

t For the readers who do not wish to go through the 
detailed analyses the more immediate practical results are 
collected in the Appendix. 
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by which we mean that the temperature vector 
on the right-hand side (output vector) is aiways 
obtained through multiplication of the vector on 
the left-hand side by the transfer matrix. 

As we see, the basic matrix-M-completeIy 
describes the heat exchanger from a thermal 
point of view. 

From (2) we get also 

or 

8, = M-l@, (3) 

whereD = 1 - E(r -t 1)is thedeterminant ofM. 
To (3) or (4) corresponds the operational 

scheme of Fig. 2. 

FIG. 2 

Through partial inversion of (1) there results : 

r, I’ to 
(5) 

and the operational scheme of Fig. 3. 

% 7.1 

FIG. 3. 

or, by total inversion of the [R] matrix : FIG. 5. 

T, II = 

t1 

1 Er -___ 
1 - Er 1 - Er 

1 1 - E(r + 1) 

1 - Er 1-Er 

to which corresponds the operational scheme of 
Fig. 4. 

FIG. 4. 

From (1) to (6) a static transfer factor for the 
difference between components of input and 
output vector is also obtained : 

A, = Tl - t, = fi - .E(r + l)]d, 

= D(T, - to) (7) 

6, = Ti - t, = G(To - tl) = P6, (8) 

and from (7) 

E = (1 - d,/d,)/(r + 1) = (1 - D)/(r + 1) (9) 

also from (8) 

= (P - l)/(P - r). (IO) 

3. OVERALL PARALLEL FLOW 

Suppose n exchanger are each characterized 
by its effectiveness Ei(i = 1,2,. . . n). It follows 
that each one has a transfer matrix (M or R) and 
a transfer factor (P or D). 

If they form an overall parallel flow associa- 
tion as shown in Fig. 5. 
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given the input vector (To, to), there results : 

[:‘1-[3~ 

[I] = IM1][ :‘I.= [M,l.[“r&[ 9. 

And the exchanger n will have, as output vector Tl 
[I 

G = C&l. [WI.. . L-K]. t, [I to 
or Tl T, 

[I [1 = [N]. 

Cl to 

where [N] = [M,] . [MJ . . . [Mn], [N] can be 
found using the rules of matrix product. The 
usefulness of the method, however, is improved 
by obtaining a final expression without going 
to a tedious one by one product. 

The assembly of n exchanger is, indeed, equiva- 
lent to only one with an equivalent effectiveness 
E,. In terms of E, we can also define a transfer 
matrix for the association as: 

r 1 - rE, r&J 

PI= I Et 1 - E, J 

and a transfer factor 

D, = 1 - EXr + 1) 

or 

A,, = T. - t, = D,(T, - to) A, 

but 

4 = D,Ao, 

A2 = D,A, = DIDzAo, 

A,, = D, . . . D,A,. 

(11) 

(12) 

so 
D, = D, . D, . . . D, 

and from (12) and (7): 

1 - E,(r + 1) = [l - E,(r + l)] 

x [l - E,(r + l)] . . . [ 1 - E,(r + l)] 
i=n 

or 

= iJJl Cl - Ei(r + 111 

E, = 
1 - 0 [l - Ei(r + l)] 

r+l 
(13) 

If all exchangers have the same effectiveness, 

E, 

E 
f 

= 1 - [l - E(r + l)]” 

r+l ’ 
(14) 

Once E, is known, we get [N] by introducing 
(13) in (11). From (13) or (14) 

1 
lim E,=- 

l+r 
(15) 

II-‘* 

which is the maximum effectiveness of a parallel 
flow exchanger. So, as n increases, each heat 
exchanger “forgets” its own type and on the 
limit of n = co the whole behaves as only a 
parallel flow exchanger of infinite heat transfer 
surface. 

4. OVERALL COUNTER-FLOW 

For the overall counter-flow association 
shown in Fig. 6. 

the input temperature vector is (To, t,), so we 
have the corresponding transfer matrix R. 
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Using the same reasoning as before : Y -+ 1. Using L’HGpital’s rule one obtains : 

[ ;] = PW~R,~[ I] 

n 

l- 
c 

Ei 

or 

1 - Ei 
Et= ,: (18) 

and if all Ei are the same 

with [S] = [RI]. . . [RJ 
E, = 

nE 

1 + (n - 1) E’ (19) 

l-E,(r+l) E,r 

1 - E, 1 - E, And, in any case, lim E, = 1, which shows the 
n-rm 

= 

Et 1 
equivalence to a single counter-flow exchanger 

-- _- when n = co. 
1 - E, 1 -Et, 

5. EXCHANGERS IN PARALLEL IN 

with E, as the effectiveness of the overall assembly. 
ONE OF THE STREAMS 

Again Consider first that the stream of Cmin is 
equally divided between n exchangers each 

6, = P,... P,60 = P,6, with the same effectiveness; this scheme is 

and, from (8) and (10) shown in Fig. 7. 
n 

p = -.-... Err E,r 
1 - 1 - 

= 
f 1 El 1 E, 

I-I 
- - 

1 

(Z) 
to-) 

P, - 1 
Et=-= 

P, - r 

1 

from which [S] is obtained in terms of individual 
effectivenesses. 

Fc. 7 

If all the exchangers have the same effective- 
ness, (16) simplifies to : 

we have 

E, = (17) 

Both (16) and (17) become indeterminate when Let US designate by Mii the elements of matrix 
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[M]. There results : 

TT = MllTo + M12t,, 

Tf = M,,i:+ M12to 

= M:,T, + M,,U + Ml&to 

T, = MllTo + M&l + M;;‘)t, 
” 

but from a known result of series summation : 

so 

1 -MY, 
T,=W,T,+MI,~_~ to (21) 

11 

and, immediately, each value oft* can be found 
from (20). 

The overall assembly is again equivalent to 
one heat exchanger with the same effectiveness 
E, as the whole. So, its equivalent basic transfer 
matrix [F] of elements Fij results from (1) and 
(21) as 

F,, = 1 - E,r = M;, 7 

F,, = E,r = Ml2 

l-M;, 

l-M,, 

F21 = 4 

(22) 

F,, = 1 - E, 
J 

From any of equations (21) and the definition of 
Ml1 and Ml2 results 

Et=$l - (I -;r] (23) 

from which all the elements of F are found. 
In the limit, when I + 0, expression (23) 

becomes : 

E, = E 

as would be expected. 

(24) 

It should be noted that in relation (23) the 
condition I # 0, n + co, N,, finite, implies an 
infinite subdivision of the stream and leads to an 
absurd conclusion ; this results from a violation 

of the assumptions leading to equation (1). 
That limit would correspond to a pure cross- 
flow heat exchanger where one fluid has a 
uniform temperature at each cross-section and a 
correct result could be obtained with the general 
approach presented by writing equation (1) 
in differential form and using integral calculus 
in a way similar to that used by Smith [5]. 

Except for the limiting case discussed above, 
expression (23) is correct for any arbitrarily large 
n, provided n remains finite. 

It is also worth remarking that (23) corresponds 
to the closed form solution ofan iterative method 
proposed by Shack [3] to deal with the cross- 
flow heat exchanger. Obviously the iteration 
does not converge to the exact solution as the 
present deduction shows. Besides, the usefulness 
of the solution found is greater than implied 
in Shack’s analysis since no restrictions have 
been placed on E. So, the result is valid for any 
type of individual exchanger provided they 
have the same effectiveness and mass flow rates. 

We have only considered the equal division 
of the stream of lower capacity rate. 

If the fluid of higher heat capacity rate flows 
in parallel with the exchanger but such that 

we have the scheme of Fig. 8. 

FIG. 8. 

and, using the same reasoning as before, we 
obtain 

tn = M,, 

1 - M$2 
1 _ M To + M;zto 

22 
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and 

E, = 1 - (1 - E)“. (25) 

If 

we have again (21) for the intermediate tempera- 
tures but for the equivalent exchanger T and t 
are reversed. 

For the equivalent exchanger results 

/ E\Pl 
E,=l- 1-5 L ) nr 

where, as before, r refers to the undivised streams 
and E to the effectiveness of the individual 
exchanger. 

If the exchangers do not have the same effec- 
tiveness but have the same M, i, which means the 
same Eirr where rr refers to the heat capacity 
rate ratio of the i exchanger, we would have for 
the subdivision of the lower capacity rate stream 
between the exchangers 

E 
f 

= 1 - (1 - r:EJ 

r (27) 

andifr = 0 

Et= __ c ’ iCLn E, 

Cmin ’ 
(28) 

1 

where iC*min/Cmin is the fraction of the stream 
which comes through the exchanger i. 

If the subdivision is on the stream of higher 
heat capacity rate but such that 

lower iC&x > Cmin 

then 

E, = 1 - (1 - EirT). 

But when 

higher iC,$,, < Cmin 

the total effectiveness becomes 

(29) 

(30) 

(31) 

independent 

of the stream subdivision provided all the ex- 
changers have the same effectiveness, i.e. 

E, = 1 - (1 - E)“. (32) 

All the conclusions in this section are easily 
derived from the previous analysis and can, in a 
similar way, be extended when (29) or (32) are 
not verified. 

For the more general case of exchangers with 
different r and E with one or both streams sub- 
divided between them the same general method 
applies. As should be expected, however, the 
final expressions become more involved and 
have not been evaluated in this paper. 

6. MIXED FLOW 

Mixed flow assemblies are those where some 
sections are in overall counter flow and others 
in overall parallel flow, irrespective of the type 
of exchangers involved. 

Let us exemplify such assemblies which, taking 
as reference the stream of C,,,, would assume 
the functional scheme shown by Fig. 9. 

FIG. 9. 

The exchangers 2 and 3 are in overall counter 
flow, so, we can construct for them the equiva- 
lent matrix, [R]. For the exchangers 4 and 5, in 
overall parallel flow we can also construct its 
equivalent matrix [Ml. In this way we reduce the 
assembly to the equivalent one shown in Fig. 10. 

To T, 
--- 

T3 73 
- e 

I R M 

- - 

ts +o 
-t4 

- +2- 

FIG. 10. 
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For the assembly 13, we invert partially its 
matrix to the basic matrix [M] which we should 
call [MR] and obtain the scheme shown in Fig. 

FIG. 11. 

[MR] and [M] correspond again to overall 
parallel flow, so we can obtain at once its 
product [P] = [MR] . [M]; this transforms the 
assembly in that of Fig. 12. 

FIG. 12. 

[P] has the structure of the basic transfer matrix. 
Inverting it partially to the structure of an [R] 
matrix, which we call [PA, results the scheme 
shown in Fig. 13. 

FIG. 13. 

Forming now the [R] matrix of (1) the assembly 
isreduced by the overall counter-flow association 
to the equivalent exchanger shown in Fig. 14. 

FIG. 14. 

It should be remarked that all the expressions for 
obtaining the product of matrices or its partial 
inversion have already been presented. Indeed, 
at each stage, only the equivalent effectiveness is 
needed since the assumption that r is constant 
implies that all the matrices can be deduced 
directly from it. The final expressions can be 
complex, particularly if the values of E are differ- 
ent for each exchanger but, in any case, they are 
found in a very straightforward way. 

After reducing the association to an equiva- 
lent exchanger the unknown input and output 
temperatures are found at once. Inverting suc- 
cessively the operations performed, we obtain all 
the intermediate temperatures. 

7. CONCLUSIONS 

The concept of transfer factor and transfer 
matrix has led to a direct method for finding the 
equivalent effectiveness of an association. In 
this way, the expressions previously given by 
Kays and London have been generalized for 
exchangers of different effectiveness. It is also 
shown that the important parameter in the 
analysis is E and not the N,,. 

The iterative expression of Shack has been 
given a closed form, and generalized for any 
type of exchanger. 

The indirect transfer type exchangers, pre- 
viously analysed by Kays and London [4] can 
easily be dealt with by the present method. 

Besides its interest as a general method, some 
practical results of immediate application for 
designers have been derived and are presented 
in the Appendix. These include the expressions 
for the effectiveness of an association in overall 
counter-flow, overall parallel flow, a combina- 
tion of parallel-counter flow (mixed flow) and 
for the subdivision of one of the streams between 
the heat exchangers. 

From a practical point of view, if the associa- 
tion is built from existing exchangers and the 
designer requires the outlet temperatures from a 
knowledge of the inlet values, the method has 
all the known advantages of the E - N,, 
approach for a single exchanger. 
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If the task is to achieve a fixed total effective- 
ness, the method greatly simplifies the analysis 
because it is independent of the type or size 
of heat exchangers involved ; this frees the de- 
signer from the requirement of equal exchangers. 

Finally, it should be stressed, the method 
reduces to a matrix product and the results are 
easily obtained because the E - I?,, concept 
has only led to linear algebraic equations instead 
of the non-linear ones characteristics of the 
logarithmic-mean temperature difference 
approach. 
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APPENDIX 

Immediate Practical Results 
For the readers who do not wish to go through 

the detailed analysis, the more immediate 
practical results are collected in this section. 

A.1 Overall parallelflow association (Fig. 5) 
For the total or equivalent effectiveness of the 

whole assembly we obtain 

or, in more compact form 

E, = 
1 - e [l - Ei(r + l)] 

r+l 

where E,fi = 1,2,. . . n) stands for the effec- 
tiveness of each exchanger in the association, 
which are numbered from 1 to n. 

If the exchangers have the same effectiveness 
the above expressions simplify to : 

E 
t 

= [1 - E(r + l)]” 
r+l ’ 

A.2 Overall c~ntff~ow ~sociation (Fig. 6) : 
If r # 1, the total effectiveness is 

E, = 

Ifr= 1 
n 

l- - 
c 

E, 
1 - Ei 

1 E,= n . 

1+ 

c 

Ei 

1 - Ei 
1 

When the exchangers have all the same effective- 
ness the above expressions simplify to the known 
results of Kays and London [4] : 

(r#1) 

E, = 
nE 

1 + (n - l)E 
(r = 1). 

E 
* 

= 1 - [l - EAr + l)] [l - E,(r + l)] . . . [l - Ei(r + l)] -- 
r-t-l 
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A.3 One of the streams subdivided between 
exchangers (Fig. 3) 

First assume that the exchangers have the 
same effectiveness, with one of the streams 
equally divided between them. 

If the subdivision is on the stream with lower 
heat capacity rate, the total effectiveness for the 
association is 

Et+ (l-&y] (YZO) 

E, = E. (Y = 0) 

If the subdivision is on the stream of higher 
heat capacity, but such that 

1 

then 

when 

E, = 1 - (1 - E) 

1 

n 
E,=l- 1-i. 

( ) 

If the exchangers do not have the same effective- 
ness neither one stream equally divided between 
them but EiYi* is constant for each one, the follow- 
ing results can be deduced for the subdivision 
on the stream of lower capacity rate : 

E, = ~ [l - (1 - Ei . pi*)] (I # 0) 

iC~i”. Ei. 

1 

then 

but when 

Et = 1 - (1 - EiYr) 

(higher iC:iJ 6 Cmin 

the effectiveness being equal for each exchanger, 
the total effectiveness becomes independent of 
the stream division and is given by 

Et = 1 - (1 - E)“. 

A.4 Mixedflow 
Considering mixed flow to be a combination 

of parallel and counter flow, as for example the 
arrangement shown in Fig. 15 

FIG. IS. 

or, in symbolic representation, shown in Fig. 16 

FIG. 16. 

the total effectiveness is 

If the subdivision is on the stream with higher 
heat capacity rate and : 

lower {C&x 2 Cmin 
E =1-[1 - E,(r + I)] [I - E,(r + I)]. 
f V-L1 3 
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this is the same as for overall parallel flow. We 
remark, again, that this is obtained very easily 
because the true flow arrangement has already 
entered through the effectiveness of the exchan- 
gers. 

With the “black box” concept the same 
arrangement can be expressed as shown in 
Fig. 17. 

clearly showing that the unknown temperatures 
on the right side of the “box” are calculated 
in chain from those on the left. 

Having been able to find the equivalent 
exchanger for an overall parallel or counter 
flow arrangement a complex association can 
always be reduced to the above example of 
mixed flow. 

This is easier for the total effectiveness. For the 
inte~ediate temperatures partial association 
can be used and this reduces that part to an 
equivalent exchanger for which the unknown 
temperatures are easily found. This can readily 
be understood from the matricial analysis pre- 
sented in the text. 

R&m~L’articie prbsente une m&hode nouvelle et &&ale de calcul de l’efficaciti totale et des tempera- 
tures inte~~iair~ de grou~men~ d’bhangeurs de chaleur. Les grou~ents peuvent consister en 
associations de n’importe quei type d’bhangeur de chaieur. 

La mtthode utilise une transformation qui relie les tempCratures d’entrti et de sortie des 6coulements 
de fluides et petmet d’obtenir des expressions analytiques. Les expressions auterieures de Gardner et de 
Kays et London pour des groupements d’hhangeurs identiques sont des cas sp6ciaux des pro&d& 
g&raux actuels. 

Les avantages de la mCthode “etlica&-nombre d’unitts de transfert” sont mis en valeur et I’on 
montre que I’efficacitk est le paramttre le plus Important. 

Z~mrnenf~~-Die Unte~uch~g liefert eine neue und allgemeine Methode zur Berechnung des 
~samtwirkungsgrad~ und der Zwischentem~ratur~ einer Zusa~enschaftung von W~rmea~t- 
auschern Dies, Systeme K&men dakei aus Wamleaustauchern der verschiedensten Art aufgebaut sein. 

Die Methode stiitzt sich auf eine Transformation welche die Einund Austrittstemperaturen der Fluids- 
trbme verkniipft und auf diese Weise die Ableitung geschlossener Ausdrticke ermiiglicht. Femer wird 
gezeigt, dass ein bereits friiher von Gardner und Kays und London fiir ein System identischer Austauscher 

angegebener Formalismus Spezialf&lle des hier vorgelegten allgemeinen Verfahrens beschreibt. 

AHHOT~~SUI--B CTaTbe ;l&?TCFl HOBbIt If O606LIJE!H!IbIfi MeTOR PaWeTa CyMMapHOi 3&&!fETYIB- 
HOCTR II IlPOMeHEJ'TOVHbIX TeMIIt?paTyp B y3JIaX TfSIJI006MOHHHKOB. Y3JIbI MOryT COCTORTh 123 

6JIOHOB ~1106nx T~TIOBTeIT~O061eHHBiSa. 
~eT0~ OCHOBaH Ha npeo6pa3osa~ar~,iiOTOpOeCB~3~saeTTe~~IIepaTyp~ ~OTO~OB ~~~~~O~T~i 

Ela BXOAe H Ha BbiXOJJe, YTO ~03BO~~eT WbfBeCTH %~pa~OK~~ B 33MtiHyTOM BEIRe. ~OK%Z%tiO, 
9To pame nonywmme I'apAKepons H Eilerulconr H JIOH~OH~M sbIpamemm AnR y3jIoB si&eeTwi- 
HWX TeIUIOO6MWIHWKOB RBJIRIOTCR VaCTHbIMLl CJIyWifIMW npeJ&lTaBJIeHIibIX B HaCTOJWJefi 
CTaTbe 06II(HX MeTOROB. 

nORqepKABaK)TCfl IIpeliMyltJWTBa IIORXOfia BE@#JeKTHBHOCTh Ii WfCJIO eRllHlnq IIepeHOCar. 
noHasaH0, 'IT0 3@jK?KTBBHOCTb WBJmeTcFI HaHFonee BaWHbIM napaMeTpoM. 


